Author:
Agueh Martial,Carlier Guillaume,Igbida Noureddine
Abstract
We consider a class of doubly nonlinear constrained evolution equations which may be viewed as a nonlinear extension of the growing sandpile model of [L. Prigozhin, Eur. J. Appl. Math. 7 (1996) 225–235.]. We prove existence of weak solutions for quite irregular sources by a semi-implicit scheme in the spirit of the seminal works of [R. Jordan et al., SIAM J. Math. Anal. 29 (1998) 1–17, D. Kinderlehrer and N.J. Walkington, Math. Model. Numer. Anal. 33 (1999) 837–852.] but with the 1-Wasserstein distance instead of the quadratic one. We also prove an L1-contraction result when the source is L1 and deduce uniqueness and stability in this case.
Subject
Computational Mathematics,Control and Optimization,Control and Systems Engineering
Cited by
3 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
1. Prediction-Correction Pedestrian Flow By Means Of Minimum Flow Problem;Mathematical Models and Methods in Applied Sciences;2023-11-24
2. Continuous Lambertian shape from shading: A primal-dual algorithm;ESAIM: Mathematical Modelling and Numerical Analysis;2022-02-24
3. On a Mathematical model for traveling sand dune;Nonlinear Analysis: Real World Applications;2021-12