Abstract
It is well known that rate-independent systems involving nonconvex energy functionals in general do not allow for time-continuous solutions even if the given data are smooth. In the last years, several solution concepts were proposed that include discontinuities in the notion of solution, among them the class of global energetic solutions and the class of BV-solutions. In general, these solution concepts are not equivalent and numerical schemes are needed that reliably approximate that type of solutions one is interested in. In this paper, we analyse the convergence of solutions of three time-discretisation schemes, namely an approach based on local minimisation, a relaxed version of it and an alternate minimisation scheme. For all three cases, we show that under suitable conditions on the discretisation parameters discrete solutions converge to limit functions that belong to the class of BV-solutions. The proofs rely on a reparametrisation argument. We illustrate the different schemes with a toy example.
Funder
Deutsche Forschungsgemeinschaft
Subject
Computational Mathematics,Control and Optimization,Control and Systems Engineering
Cited by
11 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献