Swim-like motion of bodies immersed in an ideal fluid

Author:

Zoppello Marta,Cardin Franco

Abstract

The connection between swimming and control theory is attracting increasing attention in the recent literature. Starting from an idea of Alberto Bressan [A. Bressan, Discrete Contin. Dyn. Syst. 20 (2008) 1–35]. we study the system of a planar body whose position and shape are described by a finite number of parameters, and is immersed in a 2-dimensional ideal and incompressible fluid in terms of gauge field on the space of shapes. We focus on a class of deformations measure preserving which are diffeomeorphisms whose existence is ensured by the Riemann Mapping Theorem. After making the first order expansion for small deformations, we face a crucial problem: the presence of possible non vanishing initial impulse. If the body starts with zero initial impulse we recover the results present in literature (Marsden, Munnier and oths). If instead the body starts with an initial impulse different from zero, the swimmer can self-propel in almost any direction if it can undergo shape changes without any bound on their velocity. This interesting observation, together with the analysis of the controllability of this system, seems innovative.

Publisher

EDP Sciences

Subject

Computational Mathematics,Control and Optimization,Control and Systems Engineering

Reference40 articles.

1. Agrachev A., Boscain U. and Barilari D., Introduction to Riemannian and Sub-Riemannian geometry. Preprint  SISSA 09/2012/M. Available at: https://www.imj-prg.fr/~davide.barilari/ABB-v2.pdf (2014).

2. Alouges F., DeSimone A. and Lefebvre A., Biological Fluid Dynamics: Swimming at low Reynolds numbers. Encycl. Compl. Syst. Sci. Springer Verlag (2008).

3. Optimally swimming stokesian robots

4. Optimal Strokes for Low Reynolds Number Swimmers: An Example

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. On the optimal control of rate-independent soft crawlers;Journal de Mathématiques Pures et Appliquées;2021-02

2. On the Trajectory Generation of the Hydrodynamic Chaplygin Sleigh;IEEE Control Systems Letters;2020-10

3. Control of locomotion systems and dynamics in relative periodic orbits;Journal of Geometric Mechanics;2020

4. Optimal Motion of a Scallop: Some Case Studies;IEEE Control Systems Letters;2019-10

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3