Abstract
We consider an infinite-horizon discounted optimal control problem for piecewise deterministic Markov processes, where a piecewise open-loop control acts continuously on the jump dynamics and on the deterministic flow. For this class of control problems, the value function can in general be characterized as the unique viscosity solution to the corresponding Hamilton−Jacobi−Bellman equation. We prove that the value function can be represented by means of a backward stochastic differential equation (BSDE) on infinite horizon, driven by a random measure and with a sign constraint on its martingale part, for which we give existence and uniqueness results. This probabilistic representation is known as nonlinear Feynman−Kac formula. Finally we show that the constrained BSDE is related to an auxiliary dominated control problem, whose value function coincides with the value function of the original non-dominated control problem.
Subject
Computational Mathematics,Control and Optimization,Control and Systems Engineering
Cited by
12 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献