Abstract
This paper provides results forvariational eigencurvesassociated with self-adjoint linear elliptic boundary value problems. The elliptic problems are treated as a general two-parameter eigenproblem for a triple (a,b,m) of continuous symmetric bilinear forms on a real separable Hilbert spaceV.Geometric characterizationsof eigencurves associated with (a,b,m) are obtained and are based on their variational characterizations described here. Continuity, differentiability, as well as asymptotic, results for these eigencurves are proved. Finally, two-parameter Robin–Steklov eigenproblems are treated to illustrate the theory.
Subject
Computational Mathematics,Control and Optimization,Control and Systems Engineering
Cited by
6 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献