Enhanced dielectric properties of Sr2+ and Zr4+ doped BaTiO3 colossal permittivity metamaterials

Author:

Tang Qingyang,Shi Zhicheng,Xia Shuimiao,Bie Xiaohan,Yang Yujie,Bian Dedong,Xu Daofeng,Fan Runhua

Abstract

BaTiO3, as one of the most important functional materials of perovskite structure, is widely used in the electronic industry. However, the dielectric permittivity of BaTiO3 remains relatively low, which greatly limits its practical application in metamaterials with colossal dielectric permittivity. In this work, (Ba100−xSrx)(Ti100−yZry)O3 composite ceramics are fabricated via the solid sintering method. Surprisingly, the dielectric properties of (Ba100−xSrx)(Ti100−yZry)O3 composite ceramic materials are strongly dependent on the occupancy of Sr2+ and Zr4+ at the A-sites and B-sites, respectively. Consequently, via adjusting the doping amount of SrTiO3 and BaZrO3, a greatly enhanced dielectric permittivity of 28287 (65 °C, 1 kHz), along with a high breakdown strength of 84.47 kV/cm is achieved in (Ba90Sr10)(Ti90Zr10)O3 composite ceramics, which are 2144% and 13 % higher than those of (Ba99Sr1)(Ti99Zr1)O3 composite ceramics, respectively. Moreover, the reasons for the significant increase in dielectric permittivity are identified through finite element simulations, and the breakdown mechanism of composite ceramic materials is explored. This work provides a facile approach to constructing high dielectric permittivity composite ceramics, the (Ba100−xSrx)(Ti100−yZry)O3 composite ceramics have broad application prospects in electronics and electrostatic energy storage capacitors.

Funder

Fundamental Research Funds for Central Universities of the Central South University

Taishan Scholar Foundation of Shandong Province

Shandong Natural Science Foundation for Outstanding Young Scholars

Innovative Research Group Project of the National Natural Science Foundation of China

Publisher

EDP Sciences

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3