Maximum weight t-sparse set problem on vector-weighted graphs

Author:

Lin YuquanORCID,Lin WensongORCID

Abstract

Let t be a nonnegative integer and G = (V(G),E(G)) be a graph. For vV(G), let NG(v) = {uV(G) \ {v} : uvE(G)}. And for SV(G), we define dS(G; v) = |NG(v) ∩ S| for vS and dS(G; v) = −1 for vV(G) \ S. A subset SV(G) is called a t-sparse set of G if the maximum degree of the induced subgraph G[S] does not exceed t. In particular, a 0-sparse set is precisely an independent set. A vector-weighted graph $ (G,\vec{w},t)$ is a graph G with a vector weight function $ \vec{w}:V(G)\to {\mathbb{R}}^{t+2}$, where $ \vec{w}(v)=(w(v;-1),w(v;0),\dots,w(v;t))$ for each vV(G). The weight of a t-sparse set S in $ (G,\vec{w},t)$ is defined as $ \vec{w}(S,G)={\sum }_v w(v;{d}_S(G;v))$. And a t-sparse set S is a maximum weight t-sparse set of $ (G,\vec{w},t)$ if there is no t-sparse set of larger weight in $ (G,\vec{w},t)$. In this paper, we propose the maximum weight t-sparse set problem on vector-weighted graphs, which is to find a maximum weight t-sparse set of $ (G,\vec{w},t)$. We design a dynamic programming algorithm to find a maximum weight t-sparse set of an outerplane graph $ (G,\vec{w},t)$ which takes O((t + 2)4n) time, where n = |V(G)|. Moreover, we give a polynomial-time algorithm for this problem on graphs with bounded treewidth.

Funder

NSFC

Publisher

EDP Sciences

Subject

Management Science and Operations Research,Computer Science Applications,Theoretical Computer Science

Reference28 articles.

1. Approximation algorithms for finding and partitioning unit-disk graphs into co-k-plexes

2. Clique Relaxations in Social Network Analysis: The Maximumk-Plex Problem

3. Bandyapadhyay S., A variant of the maximum weight independent set problem. Preprint arXiv:1409.0173 (2014).

4. On Bounded-Degree Vertex Deletion parameterized by treewidth

5. Bhave A.A., Greedy randomized adaptive search procedure for the maximum co-k-plex problem. Ph.D. Thesis Oklahoma State University (2010).

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3