Unsupervised 3D reconstruction method based on multi-view propagation

Author:

LUO Jingfeng,YUAN Dongli,ZHANG Lan,QU Yaohong,SU Shihong

Abstract

In this paper, an end-to-end deep learning framework for reconstructing 3D models by computing depth maps from multiple views is proposed. An unsupervised 3D reconstruction method based on multi-view propagation is introduced, which addresses the issues of large GPU memory consumption caused by most current research methods using 3D convolution for 3D cost volume regularization and regression to obtain the initial depth map, as well as the difficulty in obtaining true depth values in supervised methods due to device limitations. The method is inspired by the Patchmatch algorithm, and the depth is divided into n layers within the depth range to obtain depth hypotheses through multi-view propagation. What's more, a multi-metric loss function is constructed based on luminosity consistency, structural similarity, and depth smoothness between multiple views to serve as a supervisory signal for learning depth predictions in the network. The experimental results show our proposed method has a very competitive performance and generalization on the DTU, Tanks & Temples and our self-made dataset; Specifically, it is at least 1.7 times faster and requires more than 75% less memory than the method that utilizes 3D cost volume regularization.

Publisher

EDP Sciences

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3