A Study of Multi-Objective Aerodynamic Optimization Design for Variable Camber Airfoils and High Lift Devices

Author:

Zhou Wangyi,Bai Junqiang,Qiao Lei,Qiu Yasong,Liu Rui,Shen Guangchen

Abstract

Aiming at the synthetical optimization of the aerodynamic performance between the low-speed condition of two-dimensional high lift devices during take-off and landing phase and the high-speed condition of variable camber airfoil during cruise phase, an aerodynamic optimization design method for high lift device based on Kriging based surrogate model and multi-objective genetic algorithm has been developed. With the application of Adaptive Dropped Hinge Flap mechanism, the low-speed take-off and landing performance and high-speed cruise performance of the aircraft is improved by coupling deflection of the flap and spoiler. The position of flap hinge, deflection angle of spoiler and deflection angle of flap are taken as design variables; The Navier-Stokes equations are used to predict the aerodynamic forces of initial samples; The Kriging based surrogate model is employed to establish the algebraic relation between design variables and aerodynamic forces at take off, landing and cruise, obtaining four efficient prediction models for aerodynamic forces; Multi-objective optimization design with multi-objective genetic algorithm is conducted on the basis of surrogate models. The automatic generation of computational grid is achieved by the mesh deformation method based on RBF (Radial Basis Function) when the design variables change. On the basis of efficient global multi-objective optimization design platform, the synthetical optimization of high-speed and low-speed aerodynamic performance is conducted; The multi-objective solution set of the Pareto frontier is verified and analyzed, and the optimal solution with well matched high and low speed performance is selected.

Publisher

EDP Sciences

Subject

General Engineering

Reference17 articles.

1. Raymer D P. Aircraft Design:A Conceptual Approach[M]. Washington D C, American Institute of Aeronautics and Astronautics, 1989

2. Meredith P. Viscous Phenomena Affecting High-Lift Systems and Suggestions for Future CFD Development[C]//High-Lift System Aerodynamics, AGARD CP 515, 1993: 203-219 [Article]

3. The aerodynamic design of multi-element high-lift systems for transport airplanes

4. Huang Jianguo. Selection and Analysis of Motion Type of Trailing Edge Flap[J]. Civil Aircraft Design and Research, 2009(3) :8-12 (in Chinese)[Article]

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3