Allocation method of communication interference resource based on deep reinforcement learning of maximum policy entropy

Author:

RAO Ning,XU Hua,QI Zisen,SONG Bailin,SHI Yunhao

Abstract

In order to solve the optimization of the interference resource allocation in communication network countermeasures, an interference resource allocation method based on the maximum policy entropy deep reinforcement learning (MPEDRL) was proposed. The method introduced the idea of deep reinforcement learning into the communication countermeasures resource allocation, it could enhance the exploration of the policy and accelerate the convergence to the global optimum with adding the maximum policy entropy criterion and adaptively adjusting the entropy coefficient. The method modeled interference resource allocation as Markov decision process, then established the interference strategy network to output allocation scheme, constructing the interference effect evaluation network of the clipped twin structure for efficiency evaluation, and trained the policy network and the evaluation network with the goal of maximizing the strategy entropy and the cumulative interference efficacy, then decided the optimal interference resource allocation scheme. The simulation results show that the algorithm can effectively solve the resource allocation problem in communication network confrontation, comparing with the existing deep reinforcement learning methods, it has faster learning speed and less fluctuation in the training process, and achieved 15% higher jamming efficacy than DDPG-based method.

Publisher

EDP Sciences

Subject

General Engineering

Cited by 7 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3