Effect of wavy leading edge on hydrofoil-turbulence interaction noise

Author:

Li Fang,Huang Qiaogao,Pan Guang,Shi Yao

Abstract

In order to solve the underwater noise pollution and improve the acoustic stealth performance of underwater vehicles, NACA0020 was bionically modified according to the structure of the leading edge tubercles of humpback fin. The flow field and noise characteristics of the hydrofoil-turbulent interaction model before and after the modification were studied by using the large eddy simulation and the FW-H equation. The results show that the wavy leading edge can effectively reduce the turbulence interaction noise of the hydrofoil, especially the broadband noise after 89.55 Hz. The overall sound pressure level(OASPL) directivity of the wavy leading edge hydrofoil are the same as the original hydrofoil, and both have dipole characteristics, but the noise value in all directions is reduced to a certain extent. The OASPL is calculated and analyzed in different frequency bands. The results show that the OASPL has a best reduction in 1 000-5 000 Hz frequency band, and the noise can be reduced up to 12.6 dB. Through the analysis of flow field, it is concluded that the noise reduction effect of wavy leading edge mainly relates to the decrease in pressure fluctuation at leading edge and the decrease in coherence of vortex in spanwise direction caused by the enhancement of spanwise flow.

Publisher

EDP Sciences

Subject

General Engineering

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3