An ant colony algorithm model for UAV sense and avoid based on ADS-B

Author:

Yuan Mengting,Shi Hongwei

Abstract

In the context of airspace fusion, in order to improve the safety performance of UAV and prevent the occurrence of air collision accidents, an ant colony algorithm model for UAV sense and avoid based on ADS-B monitoring technology is proposed. The model mainly consists of two parts: the deterministic conflict detection model makes the full use of ADS-B information to calculate the geometric distance from the horizontal and vertical planes to identify the conflict target, and the conflict resolution model is based on the ant colony algorithm which introduces the comprehensive heuristic function and sorting mechanism to plan the route again for achieving the collision avoidance. The simulation results show that the conflict detection model can effectively identify the possible threat targets, and the conflict resolution model is not only suitable for the typical two aircraft conflict scenarios, but also can provide a better resolution strategy for the complex multiple aircraft conflict scenarios.

Publisher

EDP Sciences

Subject

General Engineering

Reference18 articles.

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. A Neural Network Unmanned Aerial Vehicle Conflict Resolution Method Based on Bat Algorithm;2024 IEEE 2nd International Conference on Control, Electronics and Computer Technology (ICCECT);2024-04-26

2. Improved Design of Computer Network Based on Ant Colony Algorithm;2023 4th International Conference for Emerging Technology (INCET);2023-05-26

3. Application Research of Ant Colony Algorithm in Cross Basin Reservoir Earthquake and Dam Strong Earthquake;2023 IEEE International Conference on Integrated Circuits and Communication Systems (ICICACS);2023-02-24

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3