A hierarchical aggregation model for combat intention recognition

Author:

LI Ying,WU Junsheng,LI Weigang,DONG Wei,FANG Aiqing

Abstract

Combat intent recognition refers to analyzing the enemy target's state information to interpret and judge the purpose of the enemy. With the increased knowledge of combat platforms, these time-series enemy state presents multi-dimensional and massive characteristics. Using neural networks to learn enemy state information has become a research trend in the face of such traits. To address these challenges, we propose a hierarchical aggregation model to recognize the intention of the target. The bottom layer of our model is based on convolutional neural network(CNN) to perceive behavior features, and the middle layer is based on Bi-LSTM(Bi-directional long short-term memory) to aggregate the long-time interdependence information between sub-intentions. The top layer focuses on higher-level features that contribute more to the recognition of intent through the attention mechanism and finally combines the global information to recognize the intention. Extensive experimental results show the superiority of our model in that the recognition accuracy achieves 88.83%, which can solve the problem of identifying air target intent on the modern battlefield.

Publisher

EDP Sciences

Subject

General Engineering

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3