Research on the forward flight performance of rotor based on variable-droop leading edge

Author:

Li Congcong,SHI Yongjie,Xu Guohua,Liu Xingliang

Abstract

Aiming at the dynamic stall phenomenon of the retreating side of the rotor in forward flight, the existing flow control method of dynamic leading edge droop was applied to the flow control of forward-flying rotor at three-dimensional scale. A numerical simulation method based on variable droop leading edge is established in this paper. The seesaw rotor is taken as the research object, the moving overset mesh method and RBF grid deformation technology are used, the integral form of Reynolds average N-S equation is the main control equation. The influence of the dynamic leading edge at r/R=0.75~1 on the aerodynamic characteristics of the rotor when the forward ratio is 0.3 is investigated. It is found that variable droop leading edge on the retreating side can effectively inhibit the generation and development of separation vortices near the trailing edge, and has a significant effect on lifting lift coefficient and section normal force coefficient, reducing torque coefficient, and thus improving the equivalent lift-drag ratio of the rotor. In a certain range, the control effect is better with the increase of the droop amplitude under the leading edge.

Publisher

EDP Sciences

Subject

General Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3