Author:
Wang Lican,Chen Rongqian,You Yancheng,Chen Zhengwu,Qiu Ruofan
Abstract
The shear layer characteristics of an open-jet acoustic wind tunnel are of key importance on measurements of aeroacoustics. The effects of thickness, spreading angle and strength of shear layer on acoustic propagation and source localization are investigated through the mean/spreading shear layer with a self-similar velocity distribution. Based on the shear flow, the acoustic propagation is computed by the linearized Euler equations via a source term, and then source localization is obtained from beamforming technique combined with the theory of Amiet. Results show that the numerical method can precisely capture the refraction and reflection after sound traversing shear layer. The thickness, spreading angle and strength of the shear layer exerts little effects on the refracted region where sound wave nearly vertical incident, while mainly influence the corresponding up/downstream region in terms of phase change. Increment of thickness, spreading angle and strength of the shear layer increases the acoustic difference between the shear layer with and without thickness, and produces a larger error of source localization downstream of the actual position.
Cited by
3 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献