Exploring UAV autonomous navigation algorithm based on soft actor-critic

Author:

KOU Kai,YANG Gang,ZHANG Wenqi,LIU Xincheng,YAO Yuan,ZHOU Xingshe

Abstract

The existing deep reinforced learning algorithms cannot see local environments and have insufficient perceptual information on UAV autonomous navigation tasks. The paper investigates the UAV's autonomous navigation tasks in its unknown environments based on the nondeterministic policy soft actor-critic (SAC) reinforced learning model. Specifically, the paper proposes a policy network based on a memory enhancement mechanism, which integrates the historical memory information processing with current observations to extract the temporal dependency of the statements so as to enhance the state estimation ability under locally observable conditions and avoid the learning algorithm from falling into a locally optimal solution. In addition, a non-sparse reward function is designed to reduce the challenge of the reinforced learning strategy to converge under sparse reward conditions. Finally, several complex scenarios are trained and validated in the Airsim+UE4 simulation platform. The experimental results show that the proposed method has a navigation success rate 10% higher than that of the benchmark algorithm and that the average flight distance is 21% shorter, which effectively enhances the stability and convergence of the UAV autonomous navigation algorithm.

Publisher

EDP Sciences

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3