Author:
LI Xudong,LI Yanjun,CAO Yuyuan,WANG Xingye,DUAN Shixuan,ZHAO Zejian
Abstract
Contrapose the highly integrated, complex working conditions and many kinds of faults of aircraft electro hydrostatic actuator(EHA), to diagnose the typical fault of EHA effectively, a fault diagnosis algorithm based on convolutional neural networks (CNN) and support vector machine(SVM) was proposed. Firstly, the fault date sets are entered on CNN for adaptive feature extraction, then the output of the fully connected layer of CNN are classified by using SVM. To improve the performance of SVM, dynamic inertia weight adaptive particle swarm optimization (IWAPSO) was used to optimize the SVM parameters. Finally, the sensitivity of SVM to noise was reduced by introducing ramp loss function. The results show that the accuracy of SVM after parameter optimization is 12.6% higher than that of standard SVM and 17.3% higher than CNN. The SVM based on the ramp loss function showed better robustness when using noisy test sets.
Reference15 articles.
1. OUYANG Xiaoping. Modern hydraulics for aircrafts[M]. Hangzhou: Zhejiang University Press, 2016: 166–171 (in Chinese)
2. NAWAZ M H, YU L, LIU H. Analytical method for fault detection & isolation in electro-hydrostatic actuator using bond graph modeling[C]//14th International Bhurban Conference on Applied Sciences and Technology, New York, 2017: 312–317
3. DALLA VEDOVA M D L, BERRI P C, BONANNO G, et al. Fault detection and identification method based on genetic algorithms to monitor degradation of electrohydraulic servomechanisms[C]//4th International Conference on System Reliability and Safety, New York, 2019: 304–311
4. XIAO Xue, ZHAO Shoujun, CHEN Keqin, et al. Application of principal component analysis in fault diagnosis of electro-hydrostatic actuators[J]. Missiles and Space Vehicles, 2019(1): 94–100. [Article] (in Chinese)
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献