Design of Control Law of Post Stall Maneuver under Unsteady Aerodynamics Based on Improved Dynamic Inverse Method

Author:

Lyu Yongxi,Zhang Weiguo,Shi Jingping,Qu Xiaobo,Chen Huakun

Abstract

In this paper, a practical improved dynamic inverse control method is proposed to solve the large control error and control hysteresis of post stall maneuver under unsteady aerodynamics. Firstly, depending on the wind tunnel experimental data of the advanced fighter aircraft model under biaxial coupled large oscillation, an accurate unsteady aerodynamic model is established by using the improved extreme learning machine (ELM) method. Secondly, in terms of the time scale separation, the control error caused by unsteady aerodynamic is reduced by adding integral in the fast loop, and the control delay caused by unsteady aerodynamic is eliminated by applying the lag correction link in the slower loop. The deflections of conventional aerodynamic surface and thrust vector are allocated by the daisy chain method. Finally, the formula of the reduced frequency, which is the key factor in the unsteady aerodynamic modelling process, is derived by analyzing the wind tunnel data. The effectiveness of the present method for the scaled model is verified by herbst post stall maneuver. The present work provides a practical and reliable way for the flight test of post stall maneuver.

Publisher

EDP Sciences

Subject

General Engineering

Reference13 articles.

1. Zhu Jihong, Zhang Shangmin, Zhou Chijun, et al. Dynamic Characteristics and Challenges for Control System of Super-Maneuverable Aircraft[J]. Control Theory & Applications, 2014, (12): 1650-1662 [Article]

2. Nonlinear inversion flight control for a supermaneuverable aircraft

3. Wu F, Gopalarathnam A, Kim S. Post-Stall Aerodynamic Modeling and Gain-Scheduled Control Design[C]//AIAA Guidance, Navigation, and Control Conference and Exhibit, 2005: 6169

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3