Author:
CHEN Xinzhe,LIANG Hong,XU Weiyu
Abstract
Due to the low resolution and the small number of samples of sonar images, the existing class incremental learning networks have a serious problem of catastrophic forgetting of historical task targets, resulting in a low average recognition rate of all task targets. Based on the framework model of generated replay, an improved class incremental learning network is proposed in this paper, and a new deep convolution generative adversarial network is designed and built to replace the variational autoencoder as the reconstruction model of generated replay incremental network to improve the effect of image reconstruction; a new convolution neural network is constructed to replace the multi-layer perception as the recognition network of generated replay incremental network to improve the performance of image classification and recognition. The results show that the improved generated replay incremental network alleviates the problem of catastrophic forgetting of historical task targets, and the average recognition rate for all task targets is significantly improved.