A new signal fault detection algorithm for vector tracking loop in strong noise environments

Author:

WANG Huibin,CHENG Yongmei,TIAN Zhaoxu

Abstract

In the vector tracking loop(VTL) of the satellite navigation system, the signal faults caused by the abnormal atmospheric disturbances or other interferences may be distorted when outputted by the discriminators, due to the nonlinearities in the discriminators. This makes the large bias faults in strong noise environments hard to detect and then the navigation solution may be contaminated. A new signal fault detection algorithm for VTL in strong noise environments is proposed in this paper to deal with this issue. Firstly, the reason and effects of distortion that occurs on discriminator output are analyzed. Then a new code discriminator is designed for signal fault detection, which owns a wider positive correlation output range about the code tracking error thus improving the detection ability for large abrupt bias faults and drift faults in strong noise environments. Later a third-degree spherical-radial cubature rule is employed to estimate the test statistic and its variance matrix. Finally, comparison trials about abrupt faults and drift faults in different noise environments illustrate that the proposed algorithm maintains reliable detection ability about abrupt faults that are larger than 0.5 chips and can detect drift faults in 25~30 dBHz strong noise environments.

Publisher

EDP Sciences

Subject

General Engineering

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Partial discharge fault detection method of switchgear based on signal aliasing spectrum separation model;Journal of Physics: Conference Series;2024-02-01

2. Research on Fault Signal Reconstruction of Treadmill Equipment Based on Deep Neural Network;Lecture Notes of the Institute for Computer Sciences, Social Informatics and Telecommunications Engineering;2024

3. Research on knowledge representation and modeling of health management based on fuzzy ontology;Journal of Intelligent & Fuzzy Systems;2023-05-04

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3