Study on coupling characteristics of supersonic inlet and pulse detonation combustor

Author:

MA Xiaomin,LI Qing'an,ZHANG Yonghui,FAN Wei

Abstract

Coupling model for two-dimensional mixed-compression supersonic inlet with Mach number of 2.5 at design point and pulse detonation combustor was established, and three working schemes were designed to investigate multi cycle working process by using unsteady numerical simulation with chemical reaction. The results show that the following two measurements can both restrain the back-propagating compression wave and broaden the stability margin of the inlet and increase the frequency, one of which is the pressure relief at the outlet of the combustor, the other is valve at the inlet of the combustor. Nevertheless, the former will lose thrust, while the latter can greatly increase thrust. Meanwhile, the valve will reflect the compression wave in the production; increase the turbulence in the combustor, and make the gas entrained into the diffuser section of the inlet at the moment of opening the valve. However, the reflected compression wave in the hot production will not affect the velocity and shape of the detonation wave. Furthermore, in the period of detonation wave initiation and propagation, the blockage ratio of physical obstructions at the inlet of the combustor should be expanded as much as possible. At the same time, the flow at the outlet of the inlet should not be blocked to increase the flow resistance.

Publisher

EDP Sciences

Subject

General Engineering

Reference16 articles.

1. YAN Chuanjun, FAN Wei. Pulse detonation engine principle and key issues of technology[M]. Xi'an: Northwestern Polytechnical University Press, 2005 (in Chinese)

2. BUSSING T, PAPPAS G. An introduction to pulse detonation engines[C]//Aerospace Sciences Meeting & Exhibit, 1994

3. HINCKLEY K, CHAPIN D, TANGIRALA V, et al. An experimental and computational study of pulse detonation engines[C]//AIAA Aerospace Sciences Meeting & Exhibit, 2004

4. Interactions Between Shock and Acoustic Waves in a Supersonic Inlet Diffuser

5. MULLAGIRI S, SEGAL C. Oscillating flows in inlets of pulse detonation engines[C]//39th Aerospace Sciences Meeting & Exhibit, 2001

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Shock train response to pulse backpressure forcing;The Aeronautical Journal;2024-01-17

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3