Optimization of Process Parameters for Robotic Fibre Placement

Author:

Zhao Pan,Shi Yaoyao,Kang Chao,Yu Tao,Deng Bo,Zhang Hongji,Chen Zhen

Abstract

Compared with labour-intensive and time-consuming processing of conventional fabrication methods, the robotic fiber placement process greatly improves the flexibility of the fiber placement process and allows for the construction of more complex structures. Based on the study of the placement process, the intimate contact process and healing process were analysed theoretically. The key process parameters for affecting the quality of the composite component were put forward:hot gas torch temperature, compaction force and laying velocity. In order to analyse the fabrication process for laying the cylindrical parts with 0-degree tow direction, the model of the process parameters coupling affected the interlaminar bond strength was established, according to the design of the response surface method. The reliability and validity of the model were verified by the analysis of variance. The optimal process parameters of fiber placement were obtained. The results show that the model is effective and the optimum peeling force of the laying products is 24.1 N under the optimum process parameters.

Publisher

EDP Sciences

Subject

General Engineering

Reference15 articles.

1. Analysis and control of the compaction force in the composite prepreg tape winding process for rocket motor nozzles

2. Improved uniform degree of multi-layer interlaminar bonding strength for composite laminate

3. Han Zhenyu, Li Yuehua, Fu Hongya, et al. Thermoplastic Composites Fiber Placement Process Research[J]. Journal of Materials Engineering 2012 2 91 96 (in Chinese) [Article]

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3