Author:
Bai Pengyuan,Xu Hua,Sun Li
Abstract
The recognition of modulation schemes for communication signals is an important part of communication surveillance and spectrum monitoring. An algorithm based on deep learning and spectrum texture is proposed to recognize modulation schemes. Based on imperceptible differences among various spectrums of modulation schemes, the algorithm uses Convolution Neural Network to capture the features of image texture and thus classify the features with a SOFTMAX classifier. The experiment shows the algorithm performs better than traditional algorithm based on feature parameters, while the features captured can better reveal the signal detail and reduces effort on feature parameter design.
Cited by
5 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献