Underwater Bearing-Only Multitarget Tracking in Dense Clutter Environment Based on PMHT

Author:

Li Xiaohua,Li Ya'an,Lu Xiaofeng,Zhao Chenxu,Yu Jing

Abstract

Underwater bearing-only multitarget tracking in clutter environment is challenging because of the measurement nonlinearity, range unobservability, and data association uncertainty. In terms of the principle of expectation maximization, combining the extended Kalman filter (EKF) and unscented Kalman filter algorithm(UKF), a new bearing-only multi-sensor multitarget tracking via probabilistic multiple hypothesis tracking(PMHT) algorithm is proposed. The PMHT algorithm introduces an association variable to deal with the data association uncertainty problem between the measurements and the targets. Furthermore, the EKF-based PMHT for multi-sensor multitarget system is simplified, which obviate the need to "stack" the synthetic measurements and can reduce the computation cost. The estimation accuracy of the EKF based on PMHT approach and UKF based on PMHT approach in simulation experiments for underwater bearing-only cross-moving targets and closely spaced targets for the case of stationary multiple observations and maneuvering single observation under dense clutter environment is analyzed. The experimental results demonstrate that the present algorithm is very well in a highly clutter environment and its computational load is low, which confirms the effectiveness of the algorithm to the bearing-only multitarget tracking in dense clutter.

Publisher

EDP Sciences

Subject

General Engineering

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3