The manifold embedded selective pseudo-labeling algorithm and transfer learning of small sample dataset

Author:

WANG Yaoli,LIU Xiaohui,LI Bin,CHANG Qing

Abstract

Special scene classification and identification tasks are not easily fulfilled to obtain samples, which results in a shortage of samples. The focus of current researches lies in how to use source domain data (or auxiliary domain data) to build domain adaption transfer learning models and to improve the classification accuracy and performance of small sample machine learning in these special and difficult scenes. In this paper, a model of deep convolution and Grassmann manifold embedded selective pseudo-labeling algorithm (DC-GMESPL) is proposed to enable transfer learning classifications among multiple small sample datasets. Firstly, DC-GMESPL algorithm uses satellite remote sensing image sample data as the source domain to extract the smoke features simultaneously from both the source domain and the target domain based on the Resnet50 deep transfer network. This is done for such special scene of the target domain as the lack of local sample data for forest fire smoke video images. Secondly, DC-GMESPL algorithm makes the source domain feature distribution aligned with the target domain feature distribution. The distance between the source domain and the target domain feature distribution is minimized by removing the correlation between the source domain features and re-correlation with the target domain. And then the target domain data is pseudo-labeled by selective pseudo-labeling algorithm in Grassmann manifold space. Finally, a trainable model is constructed to complete the transfer classification between small sample datasets. The model of this paper is evaluated by transfer learning between satellite remote sensing image and video image datasets. Experiments show that DC-GMESPL transfer accuracy is higher than DC-CMEDA, Easy TL, CMMS and SPL respectively. Compared with our former DC-CMEDA, the transfer accuracy of our new DC-GMESPL algorithm has been further improved. The transfer accuracy of DC-GMESPL from satellite remote sensing image to video image has been improved by 0.50%, the transfer accuracy from video image to satellite remote sensing image has been improved by 8.50% and then, the performance has been greatly improved.

Publisher

EDP Sciences

Subject

General Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3