Complexity Estimation of Infrared Image Sequence for Automatic Target Track

Author:

Wang Xiaotian,Ma Wanchao,Zhang Kai,Li Shaoyi,Yan Jie

Abstract

Infrared image complexity metrics are an important task of automatic target recognition and track performance assessment. Traditional metrics, such as statistical variance and signal-to-noise ratio, targeted to single frame infrared image. However, there are some studies on the complexity of infrared image sequences. For this problem, a method to measure the complexity of infrared image sequence for automatic target recognition and track is proposed. Firstly, based on the analysis of the factors affecting the target recognition and track, the specific reasons which background influences target recognition and track are clarified, and the method introduces the feature space into confusion degree of target and occultation degree of target respectively. Secondly, the feature selection is carried out by using the grey relational method, and the feature space is optimized, so that confusion degree of target and occultation degree of target are more reasonable, and statistical formula F1-Score is used to establish the relationship between the complexity of single-frame image and the two indexes. Finally, the complexity of image sequence is not a linear sum of the single-frame image complexity. Target recognition errors often occur in high-complexity images and the target of low-complexity images can be correctly recognized. So the neural network Sigmoid function is used to intensify the high-complexity weights and weaken the low-complexity weights for constructing the complexity of image sequence. The experimental results show that the present metric is more valid than the other, such as sequence correlation and inter-frame change degree, has a strong correlation with the automatic target track algorithm, and which is an effective complexity evaluation metric for image sequence.

Publisher

EDP Sciences

Subject

General Engineering

Reference11 articles.

1. Zheng Xin. Evaluation Method and Application Research of Infrared Image without Reference Map[D]. Chengdu, University of Electronic Science and Technology of China, 2015 (In chinese)

2. Analysing the visual complexity of web pages using document structure

3. Predicting Complexity Perception of Real World Images

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Infrared Image Target Recognition Tracking Complexity Metrics;2024 9th International Conference on Control and Robotics Engineering (ICCRE);2024-05-10

2. Complexity Metric Methodology of Infrared Image Sequence for Single-Object Tracking;Arabian Journal for Science and Engineering;2022-07-21

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3