Author:
Wang Jingyu,Wang Xianyu,Zhang Ke,Cai Yilun,Liu Yue
Abstract
Unmanned aerial vehicle (UAV) has relatively small size and weak visual characteristics. The recognition accuracy of traditional object detection methods can decrease sharply when complex background and distraction objects exist. In this paper, we proposed a novel deep neural network (DNN) model for small UAV target recognition task. Based on the visual characteristics of surveillance image and UAV target, a multi-channel DNN is designed. Training and optimization of the DNN are completed with self-constructed UAV image database. Simulation results show that the proposed DNN model can achieve good results in recognizing the variable-scale UAV target and have compatible performance in distinguishing the interference and that the proposed model is robust and has a great potential prospect for engineering application.
Cited by
13 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献