A comparative study on NLOS error elimination methods based on channel measurement experiment

Author:

CHANG Tiantian,WANG Wei,GAO Jingjie,SHEN Xiaohong,JIANG Suying,XIE Jingli

Abstract

In order to study the performance of different elimination methods on the distance estimation forward error caused by the non-line-of-sight (NLOS) propagation of radio signals, this paper is based on the mean value, root mean square delay spread, skewness, kurtosis and peak-to-average ratio extracted from the channel state information (CSI), and combine it with the logarithmic estimated distance based on the time of arrival (TOA) as the feature input vector, through the establishment of Gaussian process regression (GPR), least square support vector machine regression (LS-SVMR) and BP neural network training model for experimental performance comparison. Through the actual measurement of the 2.4 to 5.4 GHz wireless propagation channel in the typical indoor environment, the error elimination experiment is carried out to compare the NLOS error elimination performance under different input characteristics, different bandwidths and different frequency bands. The experimental results show that the GPR model has the best NLOS error elimination performance, and the extracted CSI multi-features as the input of the GPR model can reduce the average absolute error and root mean square error by 71.12% and 81.36%, respectively. As the bandwidth continues to increase, the error elimination performance is gradually optimized. By increasing the bandwidth, the NLOS positioning error when the input features are less can be effectively improved. The positioning error of the low frequency band is smaller than that of the high frequency band under the multi-features, so the combination of all available frequency bands can eliminate the NLOS positioning error better than a single frequency band.

Publisher

EDP Sciences

Subject

General Engineering

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Ultra-wideband localization algorithm based on butterfly particle filtering;2023 IEEE International Conference on Mechatronics and Automation (ICMA);2023-08-06

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3