MUSIC algorithm based on eigenvalue clustering

Author:

ZHANG Mingyang,ZHA Songyuan,LIU Yudong

Abstract

The traditional MUSIC algorithm needs to know the number of target signal sources in advance, and further determine the dimensions of signal subspace and noise subspace, and finally search for spectral peaks. In engineering, it is impossible to predict the number of target signal sources to be measured. To solve the above-mentioned problem, an improved MUSIC algorithm without estimating the number of target signal sources is proposed. In the present algorithm, all eigenvectors of covariance matrix are regarded as noise subspace for spectral estimation, but the existence of signal subspace will make the result unreliable. In order to make the estimation result more accurate, a new weighting method for the spectral estimation results of noise subspace and signal subspace is proposed. The simulation results show that the improved algorithm can accurately estimate the number and direction of signal sources when the number of signal sources is unknown, and has greater practicability than the traditional MUSIC algorithm. In addition, the improved algorithm has better robustness.

Publisher

EDP Sciences

Subject

General Engineering

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3