Author:
Zhou Zhenhuan,Xu Wang,Deng Zichen,Xu Xinsheng,Xu Chenghui
Abstract
A novel finite element discretized symplectic method is developed for analyzing interface fracture of magneto-electro-elastic (MEE) materials under anti-plane loads. The overall cracked body is meshed by conventional finite elements and divided into a finite size singular region near the crack tip (near field) and a regular region far away from the crack tip (far field). In the near field, a based-Hamiltonian model is introduced to find the analytical series expressions, and the large number nodal unknowns are condensed into a small set of the undetermined coefficients of the symplectic series by a transformation. The nodal unknowns in the far field remain unchanged. The stress, electric and magnetic intensity factors, energy release rates (ERRs) and explicit expressions of singular field variables in the near field are simultaneously obtained without any processing.