Exploring on Aerodynamic Characteristics of Low Reynolds Number Airfoil in Time-varying Wind Field

Author:

Zhao Wei,Zhu Xiaoping,Zhou Zhou,Xu Xiaoping

Abstract

A solar-powered unmanned aerial vehicle generally encounters the problems that it has low Reynolds effects and is highly susceptible to gust response. Therefore, the grid velocity method was used to analyze the gust response characteristics of the airfoil FX63-137 under low Reynolds number. First, the reliability of the numerical simulation method at low Reynolds number and grid velocity method were verified with experimental data. Second, the gust response characteristics of FX63-137 airfoil under different Reynolds numbers and different angles of attack were numerically simulated. The results show that the magnitude of incremental lift coefficient in gust response decreases because laminar separation bubbles are complete as the Reynolds number decreases at a small angle of attack. They also show that laminar separation bubbles have an unloaded effect on gust response. At a high angle of attack, as the airfoil enters into stalling stage, the incremental lift coefficient begins to decline before reaching maximum gust disturbance. Because of the stalling of the airfoil, when the gust disappears, the incremental lift coefficient has a negative value. What's more, although the effective angle of attack is equal, the flow structure of the airfoil is somewhat different in upstream and downstream moments. Compared with the downstream moment, the incremental lift coefficient at the upstream moment is generally larger, and the incremental lift coefficient curve of the airfoil forms a non-closed hysteresis loop.

Publisher

EDP Sciences

Subject

General Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3