Search domain dimension expansion of robust matched-field source radiated power estimation

Author:

ZHANG Shaodong,SUN Chao

Abstract

Compared with the traditional source radiated power estimation method, the matched-field source radiated power estimation method can obtain more accurate estimation results. However, its performance is greatly influenced by environmental mismatch. This paper defines the impact factor of environmental mismatch to quantify the impact of environmental mismatch on the acoustic transfer function and the matched-field source radiated power estimation method. It determines that the key to improve the robustness of environmental mismatch is to accurately estimate the acoustic transfer function. In the traditional matched-field source radiated power estimation method, the search domain of the acoustic transfer function is a distance-depth two-dimensional plane and does not contain the true acoustic transfer function when the environment is mismatched. Therefore, the estimation results of the acoustic transfer function are bound to deviate from those of the true acoustic transfer function. The paper expands the search domain dimension to a three-dimensional search domain that contains distance, depth and uncertain parameter sets. The true acoustic transfer function is included in the search domain. Thus the optimal alternative acoustic transfer function is equal to the true acoustic transfer function. The objective function for the three-dimensional search domain is constructed. The smaller the absolute value of the objective function, the less the acoustic transfer function estimation deviates from the true acoustic transfer function. The source radiated power is estimated more accurately when the alternative acoustic transfer function estimation corresponding to the minimum absolute value of the objective function. The simulation results verify the theoretical analysis results.

Publisher

EDP Sciences

Reference24 articles.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3