A large-deflection deformation reconstruction method for semi-flexible plate nozzle based on strain-moment relationship

Author:

YU Chengguo,ZHANG Zhili,NIE Xuqing,ZHANG Long

Abstract

To enhance the health detection capability of the semi-flexible plate nozzle in a supersonic wind tunnel, a large-deflection deformation reconstruction algorithm for a semi-flexible plate nozzle based on the strain-moment relationship is developed. The multi-jack semi-flexible plate nozzle in the supersonic wind tunnel is studied; its mechanical model of contour assembly is established. The differential equation of flexible plate contour curve is deduced, and the elliptic integral expression of the flexible plate deformation is given. Based on the deformation theory of a rectangular thin plate, the deformation reconstruction algorithm is modified, and its correction effect is simulated and analysed with the finite element method. The maximum deviation after correction is only 10.78% compared with that before correction. The 0.3 m semi-flexible plate nozzle is used as the experimental platform to carry out the experimental study. The experimental results show that under the 6 Mach number, the large-deflection deformation reconstruction results based on strain-moment relationship are in good agreement with the experimental results. The coordinate deviation of the nozzle throat position is about 6.12% compared with the structural deformation, thus verifying that the deformation reconstruction algorithm in this paper is effective and accurate.

Publisher

EDP Sciences

Subject

General Engineering

Reference15 articles.

1. PARYZ R. Recent developments at the NASA Langley research center national transonic facility[C]//49th AIAA Aerospace Sciences Meeting Including the New Horizons Forum and Aerospace Exposition, 2011

2. 中国空气动力研究与发展中心设备设计及测试技术研究所. 大型风洞挠性喷管激光跟踪测量方法: 中国, CN201210582090.0[P]. 2013-06-05

3. LIU Zhengchong, LIAO Daxiong, DONG Yixin. Aerodynamic and structural design of high and low speed wind tunnel[M]. Beijing: National Defense Industry Press, 2003, 381 (in Chinese)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3