Author:
Yang Jiajia,He Erming,Shu Juncheng
Abstract
Floating offshore wind turbine is a complex rigid-flexible coupling nonlinear system, and the accurate dynamic model is difficultly established. Therefore, the wind-wave interference cannot be improved by adopting the conventional control strategy. In order to solve this problem, an adaptive fuzzy controller (AFC) is used to suppress the dynamic response of floating wind turbine. Two correction factors are introduced to optimize the fuzzy rule, and the traditional fuzzy controller (FC) is firstly obtained. Since the balance positions change and structural parameter perturbation of the wind turbine, an AFC is designed and validated. Finally, the suppression vibration responses ability of floating offshore wind turbine by using the different control strategies is studied under the random wind-wave disturbance and blade pitch control system coupling effect. The simulation results show that the tracking ability of the AFC to the target value is obviously higher than that of the FC; Comparing with the passive control strategy, the suppression vibration effect on the power spectral density (PSD) of the platform pitch (PFPI) motion peak can increase by 39.06% by adopting the AFC.
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献