Author:
Wu Wenhai,Guo Xiaofeng,Zhou Siyu,Liu Jintao
Abstract
Differential evolution is a global optimization algorithm based on greedy competition mechanism, which has the advantages of simple structure, less control parameters, higher reliability and convergence. Combining with the constraint-handling techniques, the constraint optimization problem can be efficiently solved. An adaptive differential evolution algorithm is proposed by using generalized opposition-based learning (GOBL-ACDE), in which the generalized opposition-based learning is used to generate initial population and executes the generation jumping. And the adaptive trade-off model is utilized to handle the constraints as the improved adaptive ranking mutation operator is adopted to generate new population. The experimental results show that the algorithm has better performance in accuracy and convergence speed comparing with CDE, DDE, A-DDE and. And the effect of the generalized opposition-based learning and improved adaptive ranking mutation operator of the GOBL-ACDE have been analyzed and evaluated as well.
Reference20 articles.
1. Constrained optimization based on modified differential evolution algorithm
2. Takahama T, SAKAI S. Constrained Optimization by the ε Constrained Differential Evolution with Gradient-Based Mutation and Feasible Elites[C]//IEEE Congress on Evolutionary Computation, 2006: 1–8
3. Ensemble of Constraint Handling Techniques
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献