A High Precision Adaptive Back-Stepping Control Method for Morphing Aircraft Based on RBFNN Method

Author:

Qiao Fuxiang,Shi Jingping,Zhang Weiguo,Lyu Yongxi,Qu Xiaobo

Abstract

To overcome the uncertainties of the nonlinear model of a morphing aircraft, this paper presents a high-precision adaptive back-stepping control method based on the radial basis function neural network (RBFNN). Firstly, based on the analysis of static and dynamic aerodynamic parameters of the morphing aircraft, its nonlinear control law is designed by using the conventional back-stepping method. The RBFNN is introduced to approximate online the uncertain terms of the nonlinear control law so as to improve its robustness. The robust term is designed to eliminate the approximation error caused by the RBFNN. Secondly, the tracking differentiator is designed through solving the virtual control variables, thus solving the "differential expansion" problem existing in the traditional back-stepping method. The Lyapunov stability analysis proves that our method can ensure that the tracking error of a closed-loop system converges finally and that its signals are uniformly bounded. Finally, the digital simulation model of the morphing aircraft is established with the MATLAB/Simulink; our method is compared with the conventional back-stepping control method. The simulation results show that our method has a higher control precision and stronger robustness.

Publisher

EDP Sciences

Subject

General Engineering

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. L1 Adaptive Control Based on Dynamic Inversion for Morphing Aircraft;Aerospace;2023-09-07

2. Adaptive Backstepping Sliding Mode Control of Morphing Aircraft with Unknown Disturbances;2023 6th International Symposium on Autonomous Systems (ISAS);2023-06-23

3. ADRC-Based Attitude Control Laws Design for Morphing Aircraft;Lecture Notes in Electrical Engineering;2023

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3