Study on the effect of transition process on rotor hovering simulation

Author:

PANG Chao,LI Meng,GAO Zhenghong

Abstract

Hovering is one of important statuses to evaluate the aerodynamic performance of a rotor. With the development of the computer technology and CFD technique, the numerical methods based on the first principle are usually employed to evaluate the hovering performance of the rotor. The transition process will evidently affect the results from the RANS-based numerical simulations in some steady cases for the fixed wing aircrafts, which should be taken into consideration in the design process. But it's not clear whether the transition process would affect the numerical results for the rotor simulation. To provide the reference in designing and evaluating the rotorcraft, the effect of the transition process in the rotor simulation needs to be discussed further. The PSP rotor proposed by NASA is calculated using the in-house solver based on the overset grid in this paper. Simulations are performed with fully turbulent model as well as the transitional model and the results are compared to the experimental data. The results prove the superior ability to simulate the flow around a hovering rotor of the in-house solver. The relative errors of the numerical results are under 5%. The range of the laminar flow on the blade is proportional to the rotor thrust, which causes a higher Figure of Merit in transition simulation than the fully turbulent simulation. The sectional pressure distribution and torque distribution along the blade apparently suffer from the transition process, which doesn't affect the thrust distribution along the blade and the blade vortex wake flow under the rotor disk. An obvious flow separation on the surface of the blade can be observed in the transition simulation compared to the fully turbulent simulation.

Publisher

EDP Sciences

Subject

General Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3