Author:
Qin Zhi,Huang Qing,Jin Hongrui,Xue Hongqian
Abstract
As a key component of the hoisting system of the crane, the steel wire rope will bear a variety of loading actions such as stretching, bending, vibration and impact in the process of traction hoisting. Therefore, it is important to determinate the dynamic characteristics of the steel wire rope under complex loads and understand the stress-strain state to predict the risk of hoisting operation in advance. This article takes the bridge crane as the engineering background, first, a dynamic model of a steel wire rope lifting system based on ADAMS/Cable was established, and the dynamic stress spectrum of the steel wire rope during the lifting process was calculated and obtained. Secondly, by establishing the geometric model and finite element model of the wire rope, the tensile stress and wire displacement distribution of the wire rope and the contact stress between the wire rope and the pulley and the wires inside the wire rope are analyzed during the lifting process of the crane. The final results show that the instantaneous acceleration of the steel wire rope increases the maximum tensile stress of the steel wire rope by 37% compared with the stable lifting stage at the instant of starting the steel wire rope, causes an increase in the stress amplitude of the wire rope cross section, and the lifting process of the steel wire rope is accompanied by unstable vibration loads. The analysis found that the outermost cross-section of the steel wire rope's outer strand was subjected to the greatest stress, and its local maximum tensile stress amplitude was increased by 56% compared to the stable lifting stage. The contact stress generated by the contact between the steel wire rope and the pulley causes contact wear on the external and internal strands of the steel wire rope, and promotes fatigue fracture of the steel wire rope.
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献