Aerodynamic Optimization Design on Supersonic Transports Considering Sonic Boom Intensity

Author:

Liu Shaowei,Bai Junqiang,Yu Peixun,Chen Bao,Zhou Boxiao

Abstract

It is key points to improve the aerodynamic efficiency and decrease the sonic-boom intensity for the supersonic aircraft design. Sonic-boom prediction method with high precision combining the near-field sonic-boom prediction based on Reynolds-Averaged Navier-Stokes equations and the far-field sonic-boom prediction based on waveform parameter method is firstly established. Then the gradient of sonic boom with respect to the design variables is calculated by the finite difference method and is combined with the gradient of the aerodynamic object by the discrete adjoint technique, acting as the gradient of the weighed object function. Assembling two gradients, the optimization system couples Free Form Deform method、the dynamic mesh technique based on Inverse Distance Weighting interpolation method、the gradient-based optimization algorithm based on the sequential quadratic programming. Using the aerodynamic optimization system considering the sonic boom intensity, the paper conducts a nose angle deflection optimization design and an elaborate aerodynamic optimization including huge design variables and constraints on a supersonic business jet, while the optimization objects are the weighed object and the supersonic cruise drag coefficient. The results show that the nose is deflected downward and the shock wave pattern is changed, leading to a lower far-field maximum overpressure; the drag is decreased by 15.8 counts, and the wing load is moved inboard, also, the pressure drag of the outer wing reduces. Meanwhile, the pressure distribution in the outer wing has a weaker adverse pressure gradient and a more gentle pressure recovery. After optimization, the low-drag and low-sonic boom configuration is obtained, which verified the effectiveness of the optimization system.

Publisher

EDP Sciences

Subject

General Engineering

Reference19 articles.

1. Ang Haisong. General Layout Design Analysis of Large Aircraft[J]. Aeronautical Manufacturing Technology, 2009, (2): 38– 43 [Article]

2. Aerodynamic Optimization of Supersonic Transport Wing Using Unstructured Adjoint Method

3. Aerodynamic shape optimization of supersonic aircraft configurations via an adjoint formulation on distributed memory parallel computers

4. National Research Council. High Speed Research Aeronautics and Space Engineering Board U.S. Supersonic Commercial Aircraft: Assessing NASA's High Speed Research Program[M]. Washington, D C, National Academy Press, 1997

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3