Author:
Li Fazhong,He Zengshui,Zhang Lin,Ming Anbo,Yang Yongsheng
Abstract
The accurate description of acoustic emission signals produced by the localized fault of a rolling element bearing plays an important role in its feature extraction and analysis. This paper analyzes the excitation mechanisms and develops the analytical model of acoustic emission signals produced when the rolling element bearing passes across the localized fault on the inner or outer race. Based on the analytical model, the spectral characteristics are discussed substantially. Simulations and experiments are carried out to validate the efficacy of the model developed in the paper. The experimental results show that the response signal thus produced has two parts. The first one is produced by the entry of the rolling element bearing, while the other is produced by the departure of the rolling element bearing. The energy of both parts is concentrated around the resonance frequency of the acoustic emission transducer. Generally, the interval of adjacent acoustic emission events is not equivalent to each other and the corresponding spectrum is continuous in the high frequency band.
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
1. Research on Fault Signal Reconstruction of Treadmill Equipment Based on Deep Neural Network;Lecture Notes of the Institute for Computer Sciences, Social Informatics and Telecommunications Engineering;2024