Few-Shot Named Entity Recognition with the Integration of Spatial Features

Author:

LIU Zhiwei,HUANG Bo,XIA Chunming,XIONG Yujie,ZANG Zhensen,ZHANG Yongqiang

Abstract

The few-shot named entity recognition (NER) task aims to train a robust model in the source domain and transfer it to the target domain with very few annotated data. Currently, some approaches rely on the prototypical network for NER. However, these approaches often overlook the spatial relations in the span boundary matrix because entity words tend to depend more on adjacent words. We propose using a multidimensional convolution module to address this limitation to capture short-distance spatial dependencies. Additionally, we utilize an improved prototypical network and assign different weights to different samples that belong to the same class, thereby enhancing the performance of the few-shot NER task. Further experimental analysis demonstrates that our approach has significantly improved over baseline models across multiple datasets.

Publisher

EDP Sciences

Reference38 articles.

1. Lafferty J, McCallum A, Pereira F C N. Conditional random fields: Probabilistic models for segmenting and labeling sequence data[C]//Proceedings of the 18th Conference of the International Conference on Machine Learning. Washington D C: AAAI Press, 2001: 282-289.

2. Fritzler A, Logacheva V, Kretov M. Few-shot classification in named entity recognition task[C]//Proceedings of the 34th ACM/SIGAPP Symposium on Applied Computing. New York: ACM SIGGRAPH, 2019: 993-1000.

3. Yang Y, Katiyar A. Simple and effective few-shot named entity recognition with structured nearest neighbor learning[C]//Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing. Stroudsburg: EMNLP, 2020: 6365-6375.

4. Das S S S, Katiyar A, Passonneau R J, et al. CONTaiNER: Few-shot named entity recognition via contrastive learning[C]//Proceedings of the 60th Annual Meeting of the Association for Computational Linguistic. Stroudsburg: ACL, 2022: 6338-6353.

5. Snell J, Swersky K, Zemel R. Prototypical networks for few-shot learning[C]//Proceedings of the 2020 Conference in Neural Information Processing Systems. Cambridge: NIPS, 2020: 4077-4087.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3