Learning Label Correlations for Multi-Label Online Passive Aggressive Classification Algorithm

Author:

ZHANG Yongwei

Abstract

Label correlations are an essential technique for data mining that solves the possible correlation problem between different labels in multi-label classification. Although this technique is widely used in multi-label classification problems, batch learning deals with most issues, which consumes a lot of time and space resources. Unlike traditional batch learning methods, online learning represents a promising family of efficient and scalable machine learning algorithms for large-scale datasets. However, existing online learning research has done little to consider correlations between labels. On the basis of existing research, this paper proposes a multi-label online learning algorithm based on label correlations by maximizing the interval between related labels and unrelated labels in multi-label samples. We evaluate the performance of the proposed algorithm on several public datasets. Experiments show the effectiveness of our algorithm.

Publisher

EDP Sciences

Reference24 articles.

1. Adaptive regularization of weight vectors

2. Wang J L, Zhao P L, Hoi S C H. Exact soft confidence-weighted learning[C]// Proceedings of the 29th International Conference on Machine Learning (ICML12). New York: ACM, 2012: 121-128.

3. A Tutorial on Multilabel Learning

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3