Improve Code Summarization via Prompt-Tuning CodeT5

Author:

LI Huanzhen

Abstract

Code comments are crucial in software engineering, aiding in program maintenance and code reuse. The process of generating clear and descriptive code comments, outlining code functionality, is called code summarization. Existing code summarization methods are typically trained using transformer-based models. However, these trained models often possess limited parameters and lack specific training tasks, hindering their ability to capture code semantics effectively. This paper uses a high-capacity pre-trained model, CodeT5, for code summarization. CodeT5 is designed with an encoder-decoder architecture that excels in code summarization tasks. Furthermore, we adopt a novel paradigm, "pre-train, prompt, predict", to unlock the knowledge embedded within CodeT5. We devise a prompt template to convert input code into code prompts and fine-tune CodeT5 with these prompts—a process we term prompt tuning. Our effectiveness experiments demonstrate that prompt tuning CodeT5 with only 40% of the dataset can achieve comparable performance to fine-tuning CodeT5 with 100% of the dataset. This means our approach is applicable in few-shot learning scenarios. Additionally, our prompt learning method is not sensitive to the size of the tuning dataset. Our practicality experiments show that the performance of prompt-tuned CodeT5 far surpasses that of transformer-based models trained on code-comment datasets collected from Stack Overflow.

Publisher

EDP Sciences

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3