Myocardial Reperfusion Injury: Etiology, Mechanisms, and Therapies

Author:

Hoffman John W.,Gilbert Timothy B.,Poston Robert S.,Silldorff Erik P.

Abstract

Reperfusion of ischemic myocardium is required for tissue survival; however, reperfusion elicits pathologic consequences. Myocardial reperfusion injury is a multifarious process that is mediated in part by oxygen free radicals, neutrophil–endothelium interactions, apoptosis, and intracellular calcium overload. The oxygen paradox describes the contradictory need to delivery oxygen to ischemic tissue and the resultant reduction of oxygen to form free radicals that are involved in macromolecule oxidation, membrane disfunction, apoptosis, and damaged calcium sequestering ability, which results in hypercontracture. These cell-damaging crises are amplified by the excessive activation of neutrophils, which promote the formation of proinflammatory mediators, oxygen radicals, and the reduction of endothelial nitric oxide formation, leading to increased neutrophil–endothelium interactions and capillary occlusion. Neutrophil action is twofold, however, because it is required for necrotic debris removal after severe ischemia. The oxygen radicals produced by neutrophils, endothelium, and myocytes may also play a role in activating the apoptotic cascade. Although the role of apoptosis in reperfusion injury is controversial, apoptotic cells are found in infarcted tissue. One of the key mediators may be increased inner mitochondrial membrane permeability, resulting in reduced ATP formation, release of cytochrome c, and caspase activation, which is key to promotion of apoptosis. Increased mitochondrial membrane permeability occurs during exposure to supraphysiological calcium concentrations. This occurs because of compensatory Na+/Ca2+ exchange to remove the excess intracellular sodium resulting from decreased Na+/K+ pumping during ischemia and increased Na+/H+ exchange following reperfusion. Supraphysiological calcium elicits hypercontracture and cellular damage. The various therapies being developed to diminish myocardial reperfusion injury involve inhibition of the processes described above as well as others. Although single therapies have shown some promise, the complexity of the response to reperfusion has made dramatic improvement elusive. Effective treatment will most likely require multifaceted antagonism of the numerous pathological cascades initiated by reperfusion.

Publisher

EDP Sciences

Subject

Cardiology and Cardiovascular Medicine,Health Professions (miscellaneous),Medicine (miscellaneous)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3