Accurate predictor–corrector skip entry guidance for low lift-to-drag ratio spacecraft

Author:

Enmi Y.,Qian W.,He K.,Di D.

Abstract

This paper develops numerical predictor–corrector skip en try guidance for vehicles with low lift-to-drag L/D ratio during the skip entry phase of a Moon return mission. The guidance method is composed of two parts: trajectory planning before entry and closed-loop gu idance during skip entry. The result of trajectory planning before entry is able to present an initial value for predictor–corrector algorithm in closed-loop guidance for fast convergence. The magnitude of bank angle, which is parameterized as a linear function of the range-to-go, is modulated to satisfy the downrange requirements. The sign of the bank ang le is determined by the bank-reversal logic. The predictor-corrector algorithm repeatedly applied onboard in each guidance cycle to realize closed-loop guidance in the skip entry phase. The effectivity of the proposed guidance is validated by simulations in nominal conditions, including skip entry, loft entry, and direct entry, as well as simulations in dispersion conditions considering the combination disturbance of the entry interface, the aerodynamic coefficients, the air density, and the mass of the vehicle.

Publisher

EDP Sciences

Reference14 articles.

1. Jeremy R.R., and Zachry R.R.. 2007. A comparison of two Orion skip entry guid- ance algorithms. AIAA Guidance, Navigation and Control Conference and Exhibit. 19 p.

2. Bairstow S.H., and Barton G.H.. 2007. Orion reentry guidance with extended range capability using PredGuid. AIAA Guidance, Navigation and Control Con- ference and Exhibit. 17 p.

3. Improving Lunar Return Entry Range Capability Using Enhanced Skip Trajectory Guidance

4. Skip Entry Trajectory Planning and Guidance

5. Christopher W. B., and Ping L.. 2010. Comparison of numerical predictor– corrector and Apollo skip entry guidance algorithms. AIAA Guidance, Navigation, and Control Conference. 20 p.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3