Modeling of a coaxial liquid oxygen/gaseous hydrogen injection element under high-frequency acoustic disturbances

Author:

Beinke S.,Banuti D.,Hardi J.,Oschwald M.,Dally B.

Abstract

An experimental combustor, designated BKH, is operated at DLR Lampoldshausen to investigate high-frequency combustion instability phenomena. The combustor operates with liquid oxygen (LOx) and gaseous or liquid hydrogen propellants at supercritical conditions analogous to real rocket engines. An externally imposed acoustic disturbance interacts with a series of 5 coaxial injection elements in the center of the chamber. A combination of experimental analysis and numerical modeling is used to provide further insight and understanding of the BKH experiments. Optical data from the BKH experiments are analyzed to extract the response of the flame at the excitation frequency. A new method for reconstructing the acoustic field inside the chamber from dynamic pressure sensor data is used to describe the evolution of the acoustic mode and the local disturbance in the flame zone. An Unsteady Reynolds-Averaged Navier–Stokes (URANS) model of a single BKH injection element subjected to representative transverse acoustic velocity excitation has been computed using a specialized release of the DLR TAU code. The single-element model reproduces the retraction of the dense LOx core during transverse velocity excitation as observed experimentally. The model also provides further insight into the flattening and flapping of the flame. The flapping is identified as the oxygen core being transported by the transverse acoustic velocity.

Publisher

EDP Sciences

Reference24 articles.

1. Flame response to acoustic excitation in a rectangular rocket combustor with LOx/H2 propellants

2. Hardi J. S. 2012. Experimental investigation of high frequency combustion instability in cryogenic oxygen–hydrogen rocket engines. The University of Adelaide. Ph. D. Thesis.

3. Coupling of Cryogenic Oxygen–Hydrogen Flames to Longitudinal and Transverse Acoustic Instabilities

4. LOx Jet Atomization Under Transverse Acoustic Oscillations

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3