Nonlinear analysis of low-frequency combustion instabilities in liquid rocket engines

Author:

Leonardi M.,Di Matteo F.,Steelant J.,Nasuti F.,Onofri M.

Abstract

Low-frequency combustion instabilities are here studied taking advantage of the software EcosimPro. A specific module has been implemented based on the double time lag model and the coupling of combustion chamber and feed line oscillations were investigated by using a complete set of nonlinear equations. The characteristic time lags have been identified following two approaches: (i) a constant time lag approach; and (ii) a variable time lag approach based on correlations available in open literature. To prove the module capabilities, an experimental setup was reproduced and a stability map was generated, comparing the obtained results with literature data from both experiments and a linear double time lag model. The stability boundaries obtained with the chugging module are in good agreement with those obtained in open literature and the first characteristic frequency of the engine is well predicted. Furthermore, the model proves its capability in reconstructing the reversal in the slope of the stability boundary at low fuel injector pressure drops and in detecting the high-frequency content typically observed in presence of multimode oscillations. However, in the calculations, the higher frequency does not dominate the instabilities, that is, in the unstable regime, the model diverges with a frequency equal to the first characteristic frequency. In the last part of the paper, the variable time lag approach is used to investigate a portion of the aforementioned stability map. Thanks to the semiempirical correlations, the present authors managed to improve the prediction of the first characteristic frequency, whereas the stability boundary does not change significantly and remains comparable with the one predicted by the constant double time lag approach.

Publisher

EDP Sciences

Reference31 articles.

1. A Theory of Unstable Combustion in Liquid Propellant Rocket Systems

2. Aspects of Combustion Stability in Liquid Propellant Rocket Motors Part I: Fundamentals. Low Frequency Instability With Monopropellants

3. Wenzel L. M., and Szuch J. R.. 1965. Analysis of chugging in liquid-bipropellant rocket engines using propellants with different vaporization rates. National Aeronautics and Space Administration.

4. Casiano M. J. 2010. Extensions to the time lag models for practical application to rocket engine stability design. The Pennsylvania State University. PhD Thesis.

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3