Study of internal flame front structure of accelerating hydrogen/oxygen flames with detailed chemical kinetics and diffusion models

Author:

Bykov V.,Koksharov A.

Abstract

The problem of Detonation to Deflagration (DDT) is revisited. A stoichiometric hydrogen/oxygen combustion system is considered. The study focuses on the investigation of the system solution in the thermo-chemical state space of the system. The Σ model is implemented to study the flame acceleration and DDT in 1D formulation. The model was suggested to take into account wrinkling of the flame surface. In this way, the problem becomes treatable numerically even with the detailed mechanism of chemical kinetics and with detailed models for molecular diffusion. In order to treat and integrate the model a recently developed numerical scheme to deal with very stiff systems both in time and in space is introduced and applied. Typical system solution profiles of the ignition, quasi-deflagration, flame acceleration, DDT and detonation stages are considered to study the structure of the flame front in the system thermo-chemical state space. The results of computations show that at the stages of the ignition, deflagration and acceleration the flame structure in the state/composition space moderately depends on Σ, however, significant influence shows up during later stages of the flame acceleration and DDT. Moreover, the path of the solution in the detonation regime significantly deviates from that of deflagration. This means that accurate and quantitative study of the DDT is not possible without reliable mechanisms of chemical kinetics able to describe the system state space during the transient.

Publisher

EDP Sciences

Subject

Modeling and Simulation,Applied Mathematics

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3