Catching platelets from the bloodflow: the role of the conformation of von Willebrand factor

Author:

Belyaev Aleksey V.ORCID

Abstract

The mechanics of platelet initial adhesion due to interactions between GPIb receptor with von Willebrand factor (vWf) multimers is essential for thrombus growth and the regulation of this process. Multimeric structure of vWf is known to make adhesion sensitive to the hydrodynamic conditions, providing intensive platelet aggregation in bulk fluid for high shear rates. But it is still unclear how it affects the dynamics of platelet motion near vessel walls and efficiency of their adhesion to surfaces. Our goal is to resolve the principal issues in the mechanics of platelet initial attachment via GPIb-vWf bonds in near-wall flow conditions: when the platelet tends to roll or slide and how this dynamics depends on the size, conformation and adhesive properties of the vWf multimers. We employ a 3D computer model based on a combination of the Lattice Boltzmann method with mesoscopic particle dynamics for explicit simulation of vWf-mediated blood platelet adhesion in shear flow. Our results reveal the link between the mechanics of platelet initial adhesion and the physico-chemical properties of vWf multimers. This has implications in further theoretical investigation of thrombus growth dynamics, as well as the interpretation of in vitro experimental data.

Funder

Russian Science Foundation

Publisher

EDP Sciences

Subject

Modeling and Simulation,Applied Mathematics

Cited by 9 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3