Abstract
The inverse ECG problem is set as a boundary data completion for the Laplace equation: at each time the potential is measured on the torso and its normal derivative is null. One aims at reconstructing the potential on the heart. A new regularization scheme is applied to obtain an optimal regularization strategy for the boundary data completion problem. We consider the ℝn+1domain Ω. The piecewise regular boundary of Ω is defined as the union∂Ω = Γ1∪ Γ0∪ Σ, where Γ1and Γ0are disjoint, regular, andn-dimensional surfaces. Cauchy boundary data is given in Γ0, and null Dirichlet data in Σ, while no data is given in Γ1. This scheme is based on two concepts: admissible output data for an ill-posed inverse problem, and the conditionally well-posed approach of an inverse problem. An admissible data is the Cauchy data in Γ0corresponding to an harmonic function inC2(Ω) ∩H1(Ω). The methodology roughly consists of first characterizing the admissible Cauchy data, then finding the minimum distance projection in theL2-norm from the measured Cauchy data to the subset of admissible data characterized by givena prioriinformation, and finally solving the Cauchy problem with the aforementioned projection instead of the original measurement.
Subject
Modelling and Simulation,Applied Mathematics
Cited by
4 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献